
Journal of Alzheimer’s Disease 49 (2016) 945–959
DOI 10.3233/JAD-150814
IOS Press

945

Optimization of Statistical Single Subject
Analysis of Brain FDG PET for the
Prognosis of Mild Cognitive Impairment-
to-Alzheimer’s Disease Conversion

Catharina Langea, Per Suppaa,b, Lars Fringsc, Winfried Brennera, Lothar Spiesb, Ralph Bucherta,∗

and for the Alzheimer’s Disease Neuroimaging Initiative1
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Abstract.
Background: Positron emission tomography (PET) with the glucose analog F-18-fluorodeoxyglucose (FDG) is widely used in
the diagnosis of neurodegenerative diseases. Guidelines recommend voxel-based statistical testing to support visual evaluation of
the PET images. However, the performance of voxel-based testing strongly depends on each single preprocessing step involved.
Objective: To optimize the processing pipeline of voxel-based testing for the prognosis of dementia in subjects with amnestic
mild cognitive impairment (MCI).
Methods: The study included 108 ADNI MCI subjects grouped as ‘stable MCI’ (n = 77) or ‘MCI-to-AD converter’ according
to their diagnostic trajectory over 3 years. Thirty-two ADNI normals served as controls. Voxel-based testing was performed
with the statistical parametric mapping software (SPM8) starting with default settings. The following modifications were added
step-by-step: (i) motion correction, (ii) custom-made FDG template, (iii) different reference regions for intensity scaling, and (iv)
smoothing was varied between 8 and 18 mm. The t-sum score for hypometabolism within a predefined AD mask was compared
between the different settings using receiver operating characteristic (ROC) analysis with respect to differentiation between
‘stable MCI’ and ‘MCI-to-AD converter’. The area (AUC) under the ROC curve was used as performance measure.
Results: The default setting provided an AUC of 0.728. The modifications of the processing pipeline improved the AUC up to
0.832 (p = 0.046). Improvement of the AUC was confirmed in an independent validation sample of 241 ADNI MCI subjects
(p = 0.048).
Conclusion: The prognostic value of voxel-based single subject analysis of brain FDG PET in MCI subjects can be improved
considerably by optimizing the processing pipeline.

Keywords: Alzheimer’s Disease Neuroimaging Initiative, F-18-fluorodeoxyglucose, intensity scaling, mild cognitive impair-
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template
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INTRODUCTION

Positron emission tomography (PET) with the
glucose analog 2-[F-18]-fluoro-2-deoxy-D-glucose
(FDG) is a well-established radionuclide imaging
modality for non-invasive in-vivo assessment of synap-
tic function and dysfunction in the brain [1]. Patients
with Alzheimer’s disease (AD) show a characteristic
pattern of cerebral hypoactivity including the posterior
cingulate/precuneus area and parietotemporal associa-
tion cortices not only in the dementia phase but already
in the phase of mild cognitive impairment (MCI) [2–7].
Therefore, FDG PET is widely used for early diagno-
sis of AD and differentiation from neurodegenerative
diseases with different characteristic FDG PET pattern
[6, 8–12].

Revised criteria for the diagnosis of AD recommend
biomarkers including brain FDG PET to complement
clinical, i.e., symptom-based criteria with objective
evidence of the underlying pathology [13–15], at least
in research settings, although it has also been noted
that synaptic dysfunction of the brain most likely is
a down-stream consequence of amyloid-� pathology
and, therefore, might be better considered a biomarker
for staging and/or disease monitoring rather than a
diagnostic marker [16]. Whereas the future role of FDG
PET in the management of patients with suspected AD
might not be clear yet, currently it is still widely used
in clinically unclear cognitive impairment (CUCI) in
everyday routine.

Interpretation of brain FDG PET is based on visual
inspection of the reconstructed tomographic images.
However, the quality of the interpretation can be
improved by software support. Voxel-based statistical
single subject analysis [17, 18], i.e., voxel-by-voxel
statistical testing of the patient’s FDG PET image
against a database of normal brain FDG PETs, has been
found particularly useful: it not only allows inexperi-
enced readers to detect the AD pattern in FDG PET
with the same accuracy (both sensitivity and speci-
ficity) as experts, but also results in small improvement
of expert interpretation [19]. Thus, common practice
guidelines for brain FDG PET recommend the use of
voxel-based single subject analysis to support visual
interpretation of brain FDG PET in patients with sus-
pected AD [20, 21].

However, whereas there is general consensus that
voxel-based single subject analysis should be used,
there is much less consensus about how the analy-
sis should be performed. This is a major limitation,
because voxel-based testing requires several prepro-
cessing steps, each of which can have strong impact

on overall performance. The lack of standardization
of voxel-based single subject analysis might result in
the use of suboptimal protocols at some institutions so
that the diagnostic and prognostic potential of brain
FDG PET most likely is not fully exploited. The aim
of the present study therefore was to optimize the pro-
cessing pipeline of voxel-based single subject analysis
for prediction of MCI-to-AD conversion within the
framework of the freely available statistical parametric
mapping software package (version SPM8) [22].

MATERIALS AND METHODS

Data used in the preparation of this article were
obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (http://adni.loni.usc.edu).
The ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been
to test whether serial magnetic resonance imaging
(MRI), PET, other biological markers, and clinical and
neuropsychological assessment can be combined to
measure the progression of MCI and early AD.

MCI patients

Subjects with a baseline diagnosis of MCI, a follow-
up time of at least 36 months and baseline FDG
PET were downloaded from the ADNI database in
March 2014. Subjects were categorized according to
their diagnostic trajectory over 36 months: all sub-
jects who did not decline, i.e., who remained MCI
or changed between MCI and normal cognition, were
included in the stable MCI group, whereas subjects
whose diagnosis changed to AD (and then stayed AD)
during the 3-year follow-up were regarded as MCI-to-
AD converters. Conversion to non-AD dementia was
an exclusion criterion. There were no further exclu-
sion criteria, particularly no MCI patient was excluded
based on limited quality of the PET image. Following
this procedure, a total of 108 patients were included:
77 with stable MCI and 31 who had converted to AD
dementia (ADD). FDG PET had been performed with
18 different scanners at 44 different ADNI centers.
Subject demographics are given in Table 1. The ADNI
participant roster ID (RID) of the included patients is
given in the Supplementary Material.

Cognitively normal subjects and ADD patients

Thirty-two ADNI-normals (NC) and 32 ADNI-
ADD patients with baseline FDG PET were included

http://adni.loni.usc.edu
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Table 1
Baseline subject characteristics according to group. (NC, normal controls; MCI, mild cognitive impairment; AD, Alzheimer’s disease; MMSE,
Mini-Mental State Examination; FAQ, functional activities questionnaire; ABETA142, concentration of amyloid-� 1-42 peptide in cerebrospinal

fluid; t-sum score for the following setting: motion correction, custom FDG template, parenchyma scaling, 12 mm smoothing)

Group n age∗ (y) gender† education∗ (y) FAQ∗ MMSE∗ ABETA142∗‡ (pg/ml) t-sum score∗

NC 32 73.8 ± 4.6 22/10 16.8 ± 2.7 0.56 ± 1.24 28.9 ± 1.2 n.a. 0 ± 8212
MCI stable 77 74.5 ± 7.7 23/54 16.0 ± 2.7 1.68 ± 2.26 27.7 ± 1.6 166.7 ± 63.6 14400 ± 17483
MCI converter 31 74.7 ± 6.4 12/19 15.8 ± 3.0 5.68 ± 5.10 27.1 ± 1.4 145.1 ± 42.8 37817 ± 20182
AD 32 74.0 ± 4.7 22/10 15.2 ± 2.8 13.34 ± 5.22 23.4 ± 2.2 142.6 ± 26.0 49020 ± 21897

∗mean ± SD. †female/male. ‡A�1-42 available in none of the NC subjects, 30 MCI stables, 17 MCI converters, and 5 AD subjects (ADNI table
“UPENNBIOMK.csv”).

as normal database for single subject analysis and for
generation of an AD typical mask. The NC group was
generated from all ADNI normals who (i) had base-
line FDG PET, which (ii) had been acquired with a
Philips Gemini TF PET/CT system (5 different cen-
ters), and (iii) had baseline MRI (n = 38). Four of
these NC subjects were excluded because of abnor-
mally enlarged inner cerebrospinal fluid space [RID:
4093, 5124, 5197, 5234]. Two further NC subjects
were excluded because of at least one significant
cluster of hypometabolism (p ≤ 0.001) in leave-
one-out voxel-based single subject analysis (default
setting). The remaining 32 NC subjects are described
in Table 1.

The ADD patients were selected to match the NC
group by age and gender on a subject-by-subject base.
In the included ADD patients, FDG PET had been
acquired with 16 different scanners at 27 different cen-
ters. No attempt was made to restrict the ADD group
to patients which also had been scanned with a Philips
Gemini TF, since (i) this would have resulted in a con-
siderably smaller sample of only 7 ADD patients and
(ii) matching with respect to age and gender appeared
more important to us.

FDG PET data

In 152 out of the total of 172 subjects, FDG PET
had been acquired according to a dynamic protocol so
that 6 frames of 5 min duration from 30 to 60 min post
injection were available for analysis. The remaining
20 FDG PETs had been acquired as 30 min static
emission scan starting 30 min post injection. Recon-
structed dynamic (or static, if dynamic not available)
PET data was downloaded in its original image format
(“as archived”, DICOM, Interfile, or ECAT) in order to
guarantee that no preprocessing had been performed.
Then, the original images were converted to Nifti,
from DICOM and ECAT using SPM8, from Interfile
using ImageConverter (version 1.1.5, download:

http://www.turkupetcentre.net/programs/tpc csharp.
html).

Voxel-based single subject analysis

All image processing was performed using a
custom-made pipeline for fully automated processing
implemented in MATLAB and using routines (dicom
import, ecat import, image calculator, smooth, realign,
coregister, normalize, basic models, unified segmen-
tation) of the freely available statistical parametric
mapping software package SPM (version SPM8, Well-
come Trust Centre for Neuroimaging, Institute of
Neurology, UCL, London, UK) [22, 23].

Several repeats of voxel-based single subject anal-
ysis were performed starting with a ‘default’ setting,
which then was adapted by stepwise adding the follow-
ing changes (as described below): (i) frame-by-frame
motion correction of the dynamic PET sequences prior
to summing to one static uptake image, (ii) custom-
made tracer-specific FDG template generated from the
NCs for stereotactical normalization, and (iii) differ-
ent reference regions for scaling of voxel intensities.
Finally, smoothing prior to voxel-based testing was
varied. A summary of all settings is shown in Table 2.

The processing pipeline provides a batch mode util-
ity so that all subjects from all groups, i.e., n = 172,
were processed automatically in one batch for each
setting of the single subject analysis.

Frame-by-frame motion correction

In dynamic FDG PETs, inter-frame motion was cor-
rected using the ‘realign’ routine of SPM8. The first
frame was used as reference. The magnitude of the
motion was estimated as follows. Five reference points,
which had been predefined in template space (located
in precuneus, left/right parietotemporal and left/right
lateral temporal cortex), were transferred to the first
frame of the patient’s dynamic scan by stereotactically

http://www.turkupetcentre.net/programs/tpc_csharp.html
http://www.turkupetcentre.net/programs/tpc_csharp.html
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Table 2
Settings for single subject analysis

setting motion correction template intensity scaling smoothing [mm] comment

0 no O-15-water global scaling 12 SPM8 default
1 yes O-15-water global scaling 12 motion correction
2 yes FDG global scaling 12 custom FDG template
3a yes FDG parenchyma 12 mean (or median)
3b yes FDG iterative parenchyma 12 exclusion of hypo-voxels
3c yes FDG Yakushev∗ 12 inclusion of hyper-voxels
3d yes FDG pons 12
4 yes FDG parenchyma 8:2:18
5a yes FDG parenchyma 12 ANCOVA: covariate = age

5b yes FDG parenchyma 12 intensity scaling prior to smoothing
∗based on [31].

normalizing the template to this frame. The motion
between the first and any other frame was tracked for
each reference point, and the distance (in mm) the
point had moved was computed. The maximum dis-
tance over the 5 reference points was used as ‘motion
amplitude’ to quantitatively characterize the motion
between the first and the considered frame (indepen-
dent of the direction of the motion). Frames with a
motion amplitude > 4 mm were discarded (rationale:
4 mm is about half the spatial resolution in the recon-
structed images, which has been shown to be about
the threshold for relevant errors by mismatch between
PET and low-dose CT for attenuation correction [24]).
A motion-corrected static uptake image was obtained
by summing the remaining frames after realignment.

FDG brain template

The default PET template provided by SPM8 is
based on [O-15]-water perfusion PET images and,
therefore, might not be optimal to guide stereotac-
tical normalization of brain FDG PET images [25].
Therefore, a tracer-specific FDG PET template was
generated from the 32 NC FDG PETs. In detail, for
each NC, the motion-corrected FDG PET was co-
registered to its baseline MPRAGE MRI (the first
of the two baseline MPRAGE scans was used in all
cases; unpreprocessed MRI data was downloaded from
ADNI). Then, the MRI was segmented and stereotac-
tically normalized using SPM’s unified segmentation
algorithm [26]. Unified segmentation was guided by
freely available tissue probability maps (TPM) with
1 mm isotropic resolution generated from a sample of
662 healthy elderly subjects [27]. The latter might pro-
vide better performance in the elderly patients with
suspected neurodegenerative disease than the 2 mm
TPM from healthy young adults provided by SPM [28].

A more detailed description of the MRI processing
can be found in [29]. The optimal MRI transformation
was applied to the co-registered FDG PET to trans-
form it from native patient space into the anatomical
space of the Montreal Neurological Institute (MNI)
[22]. After stereotactical normalization, intensity scal-
ing was performed by global scaling (described below).
A preliminary FDG PET template was obtained by
averaging the scaled FDG PETs over all 32 NC sub-
jects.

In a second step, all NCs were stereotactically
normalized to the preliminary FDG template (PET-
based normalization), intensity scaled (global scaling),
and averaged to create the final FDG PET template.
PET-based stereotactical normalization reduced the
voxel-by-voxel coefficient of variance (COV) over the
stereotactically normalized and scaled NC FDG PET
images (Fig. 1, rationale: “the lower the variability in
the control group the higher the power of voxel-based
single subject analysis for detection of disease-related
alterations of FDG uptake”).

Stereotactical normalization

Stereotactical normalization as part of preprocess-
ing for voxel-based statistical testing was PET-based
in all subjects, including MCI and ADD patients as
well as NC subjects. The rationale for this was that
PET-based stereotactical normalization appears more
relevant clinically, since an individual (high resolution)
T1-weighted MRI is not always available in routine
patient care.

Each individual FDG PET image was stereo-
tactically normalized into MNI space using the
normalization routine of SPM8 and SPM’s default [O-
15]-water PET template or the new custom-made FDG
template. The following settings were used: no tem-
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Fig. 1. Voxel-wise coefficient of variance (COV) over the 32 ADNI NC subjects for different methods of stereotactical normalization (comp.
FDG brain template). Top row: MRI-based stereotactical normalization using unified segmentation. Middle row: PET-based stereotactical
normalization of the NCs using the FDG template as target. Bottom row: PET-based stereotactical normalization using an FDG template
generated from the 32 ADNI ADD subjects as target. The stereotactically normalized PET images were scaled to the parenchyma mean before
the COV was computed. The COV images were masked with the parenchyma mask for display purposes.

plate/source weighting, no template smoothing, source
smoothing 8 mm, affine regularization to MNI, non-
linear frequency cut-off 25, nonlinear iterations 16,
nonlinear regularization 1, preservation of concentra-
tion, trilinear interpolation and bounding box [–90
–126 –72; 90 90 108] mm with isotropic voxels of
2 mm edge length.

Smoothing

Stereotactically normalized images were smoothed
by convolution with an isotropic 3-dimensional
Gaussian kernel with full-width-at-half-maximum
(FWHM) ranging from 8 mm to 18 mm in steps of
2 mm.

Intensity scaling

Intensity scaling was applied after smoothing as
the last preprocessing step for voxel-based testing.
The following scaling methods were implemented:
conventional global scaling as implemented in
SPM (‘proportional scaling’) [23, 30], parenchyma
scaling, iterative parenchyma scaling (neglecting
hypometabolic voxels by iterative parenchyma scal-
ing), ’Yakushev‘ scaling (scaling factor based on
hypermetabolic voxels after global scaling [31]), and
scaling to the pons [32].

For conventional global scaling, the mean intensity
M was computed over all voxels in the total image
volume (including ‘air voxels’) and then the mean
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intensity of all voxels with intensity ≥ M/8 was used as
reference value for scaling, i.e., each voxel value was
divided by the reference value.

For parenchyma scaling, the reference value was
computed as the mean voxel intensity within a mask
that had been created by thresholding the custom FDG
template at a voxel intensity value of 1.45 (Fig. 2). A
similar mask has previously been created by the union
of the a priori images of gray and white matter provided
by SPM, each thresholded at a given probability [33].
Parenchyma scaling eliminates variability due to inter-
subject variation of extracranial FDG uptake (scalp,
nasopharyngeal space, etc.).

For iterative parenchyma scaling, brain regions with
significant hypometabolism in voxel-based testing at
the liberal significance level of p ≤ 0.01 (uncorrected
for multiple testing) in the i-th iteration were excluded
from the computation of the reference value for the
(i + 1)-th iteration [34]. The iteration was stopped when
the relative change of the reference value dropped
below 0.2% or after a maximum of 10 iterations
(the latter stop criterion was not reached in any
subject). Scaling of the NCs was adjusted during
each iteration.

For pons scaling, the mean intensity within a prede-
fined pons mask was used as reference value [32]. The
pons mask was based on the pons region of interest
(ROI) provided by the WFU PickAtlas (human atlas,
TD lobes) [35]. Slight manual adjustment of the ROI
was performed to adapt it to the customized FDG PET
template. Four of the 108 MCI subjects were excluded
from pons scaling, because the pons had not completely
been within the field-of-view of the PET acquisition in
these subjects.

Voxel-based testing

For each MCI subject, the scaled, smoothed, and
stereotactically normalized FDG PET image was com-
pared voxel-by-voxel against the group of NC subjects
using the two-sample t-test [36] implemented in SPM
with the following parameter settings: grand mean
scaling = no, ANCOVA = no, no masking, no global
calculation, no global normalization (age was used as
covariate in setting 5a, Table 2). Scaling was turned off,
since the images had been scaled during preprocess-
ing (see above). For each setting of the single subject
analysis, preprocessing of NC subjects was exactly the
same as for MCI subjects.

T-sum score

The t-sum score as proposed by Herholz and co-
workers was computed by summing the t-values from
voxel-based testing of an MCI subject over all vox-
els within a binary ‘ADD mask’. This ADD mask
is intended to delineate the brain regions with AD-
specific reduction of FDG uptake [37]. The ADD
mask was generated by voxel-based group testing for
reduced FDG uptake in the ADNI ADD patients ver-
sus the ADNI NC subjects included in the present
study (uncorrected p ≤ 0.005, cluster size ≥125 vox-
els = 1 ml). Since interactions between the ADD mask
and other preprocessing steps cannot be ruled out (with
stereotactical normalization, for example), the ADD
mask was generated separately for each setting of the
single subject analysis in order to avoid bias by a fixed
predefined mask. A representative ADD mask is shown
in Fig. 3.

Fig. 2. Parenchyma mask overlaid to the FDG template.
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Fig. 3. Representative ADD mask (generated by ADD versus NC group testing with frame-by-frame motion correction, FDG template,
parenchyma scaling, 12 mm smoothing) overlaid to the FDG template.

Receiver operating characteristic analysis

The power of the t-sum score for differentiation
between ‘MCI-to-AD converter’ and ‘MCI stable’
was analyzed using receiver operating characteristic
(ROC) analysis. The area (AUC) under the ROC curve
was used as performance measure. The nonparametric
DeLong test for paired samples was used for com-
paring the AUC between the t-sum ROC curves for
different parameter settings [38].

The AUC does not require the selection of a cut-
off and, therefore, is not affected by any limitations of
the cut-off selection process, in contrast to sensitivity,
specificity and predictive values. This also simplifies
comparison of diagnostic or prognostic utility across
methods and studies.

Head-to-head comparison against another method

For head-to-head comparison with optimized SPM8
single subject processing, the semi-quantitative brain
FDG PET parameters of ADNI subjects made avail-
able by Foster and co-workers via the ADNI website
(upload on March 17, 2015) were downloaded (on May
20, 2015). The following 6 semi-quantitative param-
eters derived by using routines from the Neurostat
software package [17] are provided: (i) mean FDG
uptake in the bilateral association cortices scaled to
mean FDG uptake in the pons (denoted AVEASSOC by

Foster et al.), (ii) mean FDG uptake in the frontal cortex
scaled to mean FDG uptake in the pons (AVEFRONT),
(iii) number of (hypometabolic) voxels ≥ 2 standard
deviations and < 3 standard deviations below the mean
in the control group (X2SDSIGPXL), (iv) number of
(hypometabolic) voxels ≥ 3 standard deviations below
control mean (X3SDSIGPXL), (v) sum over all voxel
z-scores ≥ 2 standard deviations below control mean
(SUMZ2), and (vi) sum over all voxel z-scores ≥ 3
standard deviations below control mean (SUMZ3).
These semi-quantitative parameters were available for
107 of the 108 ADNI MCI subjects included in the
present study (see above).

Validation

Inclusion of the MCI subjects described in MCI
patients (and used in the analyses described so far)
was based on a search of the ADNI database in March
2014. For generation of an independent validation sam-
ple of ADNI MCI subjects, the search was repeated in
August 2015 using exactly the same eligibility criteria.
This resulted in a total of 241 additional MCI subjects
who had completed the 3 years follow-up in the mean-
while (ADNI participant roster IDs are listed in the
Supplementary Material). 181 of these MCI subjects
had been cognitively stable for 3 years; the remaining
60 had converted to ADD. Subject demographics of
the validation sample are given in Table 3.
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Table 3
Baseline characteristics of the validation sample of ADNI MCI subjects. (MCI, mild cognitive impairment; MMSE, Mini-Mental State Exam-
ination; FAQ, functional activities questionnaire; ABETA142, concentration of amyloid-� 1-42 peptide in cerebrospinal fluid; t-sum score for

the following setting: motion correction, custom FDG template, parenchyma scaling, 12 mm smoothing)

Group n age∗ (y) gender† education∗ (y) FAQ∗ MMSE∗ ABETA142∗‡ (pg/ml) t-sum score∗

MCI stable 181 70.5 ± 7.2 86/95 16.3 ± 2.6 1.58 ± 2.66 28.2 ± 1.6 143.8 ± 29.5 14604 ± 16754
MCI converter 60 73.7 ± 6.5 23/37 16.2 ± 2.7 5.44 ± 4.83 27.2 ± 1.7 152.5 ± 47.6 28356 ± 20085

∗mean ± SD. †female/male. ‡ABETA142 available in 9 MCI stables and 17 MCI converters (ADNI table “UPENNBIOMK.csv”).

Brain FDG PETs of the MCI subjects in the valida-
tion sample were processed as described above. The
impact of the SPM8 parameter setting on the differ-
entiation between ‘MCI-to-AD converters’ and ‘MCI
stables’ was again assessed via comparison of the AUC
under the ROC curve of the t-sum score.

In the validation sample, overall accuracy, sensi-
tivity, specificity, and predictive values of the t-sum
score were estimated in addition to the AUC. The
cut-off was selected according to the Youden cri-
terion [39], i.e., by maximizing the Youden index
J = sensitivity + specificity – 1, which is symmetric in
sensitivity and specificity and, therefore, imposes equal
penalty on false positive and false negative classifica-
tions. Although maximization of the Youden index is
a rather simple model, it might be affected by statisti-
cal noise. Thus, overfitting cannot be ruled out so that
estimates of diagnostic accuracy measures are most
likely overly optimistic. In order to correct for over-
fitting, 100 repeats of 20-fold cross-validation were
performed. Estimating errors of accuracy estimates by
variance across repeats of cross-validation is limited
by the risk of duplicated training samples. We there-
fore used Equation (3) in [40] to estimate the 95%
confidence interval of the accuracy measures.

RESULTS

Image processing worked properly in all subjects
(according to visual inspection of stereotactically nor-
malized images and statistical maps), i.e., there was no
failure in any of the subjects (108 + 241 = 349 ADNI
MCI subjects, 32 ADNI normals, and 32 ADNI ADD
patients), although no subject was excluded based on
technical constraints such as poor PET image quality.
This demonstrates the robustness of the fully auto-
matic SPM processing pipeline, which is an important
prerequisite for use in everyday clinical routine. The
processing time for single subject analysis was about
4 minutes on a standard PC, which is compatible with
busy clinical workflow.

The results of the ROC analyses in the original sam-
ple of 108 MCI subjects are summarized in Fig. 4. With

Fig. 4. Area under the ROC curve for the different settings of the
SPM8 processing pipeline in the original sample of 108 MCI sub-
jects.

the SPM default setting for voxel-based single subject
analysis, the t-sum score provided an AUC of 0.728
for the differentiation between ‘MCI-to-AD converter’
and ‘MCI stable’. Frame-by-frame motion correction
improved the AUC to 0.754. Whereas replacing SPM’s
[O-15]-water template by the custom FDG template
did not further improve AUC (0.753), parenchyma
scaling (instead of proportional scaling) resulted in
considerable further improvement to AUC = 0.832.
The total improvement from AUC = 0.728 for the
default setting to AUC = 0.832 for the ‘optimized’ set-
ting was statistically significant (two-sided p = 0.046).

‘Simple’, i.e., non-iterative parenchyma scaling per-
formed better than all other scaling methods, including
iterative parenchyma scaling. The degree of smooth-
ing had negligible impact on the AUC, at least with
parenchyma scaling. Reversed order of smoothing and
intensity scaling, i.e., intensity scaling prior to smooth-
ing, resulted in reduction of AUC (0.786). Taking into
account the subjects’ age as covariate in the statistical
test did not further improve the AUC (0.829).
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Among the 6 semi-quantitative brain FDG PET
parameters provided by Foster and co-workers, the
mean FDG uptake in the association cortices scaled
to the mean pons uptake (AVEASSOC) achieved the
highest AUC with a value of 0.745 (Fig. 5). The
difference compared to AUC = 0.832 achieved with
the optimized SPM8 processing showed a tendency
towards statistical significance (two-sided p = 0.080).

ROC analysis of the SPM8 t-sum scores in the
validation sample of 241 ADNI MCI subjects resulted
in AUC of 0.675 and 0.746 with the default and
with the optimized parameter setting, respectively.
The difference was statistically significant (two-
sided p = 0.048). Cross-validated overall accuracy,
sensitivity, specificity, and predictive values are
summarized in Table 4. All these measures were
considerably larger for the optimized setting than
for the default setting. The difference was highly
significant statistically, as indicated by the fact that the
95% confidence intervals did not even overlap (except
for the negative predictive value for which there was a
small overlap).

Fig. 5. ROC curves for prognosis of MCI-to-AD conversion in the
original sample of 108 MCI subjects. “SPM8 default” and “SPM8
optimum” are for the t-sum score obtained with default and optimum
SPM8 setting, respectively. “FAQ” is for the total score of the func-
tional activity questionnaire. “Foster et al” is for the average FDG
uptake in the association cortices scaled to mean FDG uptake in the
pons (AVEASSOC) provided by Foster et al. on the ADNI web-
site (Head-to-head comparison against another method). All ROC
curves are for the same 107 MCI subjects. The ROC curves presented
in this figure use only 107 of the 108 MCI subjects included in the
present study, since AVEASSOC was not available for one subject
(RID 135).

DISCUSSION

The aim of this study was to optimize the parameter
settings of voxel-based SPM single subject analysis for
prediction of MCI-to-AD conversion within 3 years by
brain FDG PET. The following aspects of the process-
ing pipeline were considered: frame-by-frame motion
correction, [O-15]-water versus FDG template, spatial
smoothing, and intensity scaling.

The first step towards improved single subject anal-
ysis of brain FDG PET was motion correction. The
majority of the ADNI brain FDG PETs included in the
present study comprised 6 frames of 5 min duration
from 30 to 60 min post injection. Motion correction
was performed frame-by-frame by realigning frames
2 to 6 with the first frame. With modern PET/CT (and
PET/MR systems), PET emission recording is in list
mode which allows arbitrary framing of the acquired
data during image reconstruction. Modern PET/CT
(and PET/MR systems) also provide high sensitivity
for the detection of radioactive decays so that ade-
quate statistical image quality requires less than 30 min
acquisition time (after injection of a standard dose of
about 200 MBq FDG [20, 21]). In our department, we
perform a 15-min acquisition 40 ± 5 min post injection
which then is reconstructed into 15 frames of 1 min
duration for frame-by-frame motion correction.

The second important factor was intensity scaling
which has been found to have a large impact on the
performance of single subject analysis of brain FDG
PET also in previous studies [32, 41–44]. In the present
study, direct voxel-wise scaling to the mean intensity
in a predefined gray and white matter (parenchyma)
mask provided the best performance. Compared to
the widely used proportional scaling method imple-
mented in SPM, the AUC increased from 0.754 to
0.832. This most likely is explained by elimination
of extra variability associated with inter-subject dif-
ferences of extracranial FDG uptake, for example in
the scalp and in nasopharyngeal space. Proportional
scaling typically averages the voxel intensity over all
tissues with visually detectable FDG uptake including
extracranial structures.

A limitation of simple scaling to the mean inten-
sity in the fixed parenchyma mask is that this mask
includes brain regions affected by reduced FDG uptake
in patients with ADD and MCI due to AD, which
results in underestimation of the true reference value.
The latter causes overestimation of scaled FDG uptake
which results in reduced power for the detection
of hypometabolism (and spurious hypermetabolism)
[45]. This effect can be avoided either by using a fixed
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Table 4
Area (AUC) under the ROC curve, cut-off value on the t-sum score determined by the maximum Youden index, and accuracy measures for
prediction of ADNI-MCI to ADD conversion within 36 months by the t-sum score computed by the SPM8 single subject processing pipeline
with default or optimized setting in the validation sample of MCI subjects. All accuracy measures were cross-validated by 100 repeats of 20-fold
cross-validation. 95% confidence intervals (CI) are given in brackets. The 95%-CI for the AUC was obtained as described in [38], the 95%-CIs
for the accuracy measures were estimated according to [40]. The standard deviation of the cut-off is given in round brackets. (PPV, positive

predictive value; NPV, negative predictive value)

setting AUC cut-off Cross validated

accuracy sensitivity specificity PPV NPV

default 0.675 [0.60–0.75] 21735 (8172) 0.57 [0.52–0.62] 0.58 [0.53–0.63] 0.56 [0.51–0.62] 0.31 [0.26–0.36] 0.80 [0.76–0.84]
optimized 0.746 [0.67–0.82] 18774 (1199) 0.68 [0.63–0.73] 0.70 [0.65–0.75] 0.68 [0.63–0.73] 0.42 [0.37–0.47] 0.87 [0.83–0.90]

anatomical reference region which is not affected by
AD or by using data-driven techniques to automatically
eliminate affected regions based on statistical crite-
ria. Methods of both types were tested in the present
study. The pons was used as AD-unaffected reference
region, based on the finding of preserved pontine glu-
cose metabolism in AD by Minoshima and co-workers
[32]. Iterative parenchyma scaling and the Yakushev
method [31] were used as data driven techniques. How-
ever, none of these methods performed better than
simple parenchyma scaling. We hypothesize that this
is related to statistical noise of the reference value: the
larger the reference region the smaller the statistical
noise of the reference value obtained by averaging the
intensity over all voxels within the reference region.
The results of the present study suggest that reduction
of statistical noise by the large size of the parenchyma
reference region overcompensates the impact of sys-
tematic underestimation of the reference value caused
by AD-related hypometabolism in the parenchyma ref-
erence region, at least for prediction of MCI-to-AD
conversion. With data-driven methods, the reference
region varies between tests which might be considered
a disadvantage in single subject analysis (inter-subject
variability of test performance).

The mean of the voxel intensity over all voxels
within the reference region was used as reference value
to characterize the FDG uptake in the reference region.
We also tested the median instead of the mean (results
not shown). The rationale for this was that the median
might be less sensitive to moderate (disease-related)
intensity changes which primarily affect the inten-
sity spectrum above the median and, therefore, do
not change the median. However, using the median
did not improve prognostic accuracy (for example,
parenchyma scaling: AUC = 0.798 versus 0.832 with
median and mean, respectively).

Pons scaling performed slightly worse than
parenchyma scaling (AUC = 0.762 versus 0.832). In
addition, when using the pons as reference region, it

is mandatory to carefully check in each single subject
whether the pons has been completely within the field-
of-view of the PET acquisition. Failure to do so might
result in false negative single subject analysis due to
severe underestimation of pontine FDG uptake.

Concerning the brain template used to define the
target space for stereotactical normalization, there was
no difference with respect to MCI-to-AD prognosis
between the [O-15]-water template provided by SPM
and a custom-made tracer-specific template generated
from FDG PETs of age-matched ADNI NC subjects.
We made some attempts to improve the FDG PET tem-
plate, for example by using the 32 ADNI ADD patients
included in the present study rather than the ADNI NC
subjects to generate the template. However, this ADD
FDG template resulted in increased voxel-by-voxel
coefficient of variance over the stereotactically nor-
malized and parenchyma scaled NC FDG PET images
(Fig. 1). Although this did not degrade the accuracy
for prediction of MCI-to-AD conversion (0.831 versus
0.832 for ADD FDG and NC FDG template, respec-
tively), the NC FDG PET template described above
was used for all analyses presented here.

It has been previously shown that the template can
have a considerable impact on the performance of sin-
gle subject analysis [46, 47]. That the impact was small
in the present study might be explained by the fact
that O-15-water and FDG PET provide rather simi-
lar images (both are considered surrogate of synaptic
activity).

MRI-based stereotactical normalization of FDG
PET was performed only during template generation
(see Materials and Methods), although MRI-based
stereotactical normalization has been shown to
improve the power of voxel-based testing compared to
PET-based stereotactical normalization [48]. However,
in everyday clinical patient care, MRI is not available
in all patients. Therefore, we recommend PET-based
stereotactical normalization for clinical routine, in
order to guarantee the same processing in all patients.
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Fully consistent processing in all patients appears
important in clinical routine to guarantee stable per-
formance of statistical single subject analysis.

The amount of smoothing, too, had only very small
impact on the prognosis of MCI-to-AD conversion,
even though it was varied in the rather large range
from 8 to 18 mm FWHM. The aim of spatial smooth-
ing is (i) to cope with residual inter-subject variability
after stereotactical normalization and (ii) to increase
the signal-to-noise ratio for improved statistical power
for detection of hypometabolic clusters. It has been
suggested that spatial smoothing should match the spa-
tial extent of the effect to be detected [49, 50]. Thus,
one would expect rather strong smoothing to work
best for the detection of the spatially rather extended
AD-characteristic pattern of hypometabolism in FDG
PET (typical volume of the ADD mask was about
370 ml, comp. Fig. 3). The fact that smoothing had
only a very small effect in the present study might be
explained by some interaction with the parenchyma
mask used as reference region for intensity scaling.
The parenchyma mask is rather narrow (Fig. 2) so
that increasing the width of the Gaussian smooth-
ing kernel beyond the radial width of the mask is
expected to have only a small effect on voxel inten-
sities within the parenchyma mask. In order to test
this hypothesis, variation of the smoothing kernel
was repeated in combination with proportional scal-
ing. Proportional scaling typically includes the whole
head as reference region and, therefore, should be
more sensitive to smoothing than parenchyma scal-
ing. This was confirmed: with proportional scaling, the
AUC of the t-sum score increased with the amount of
smoothing, from AUC = 0.749 at 8 mm kernel width
to AUC = 0.767 at 14 mm to AUC = 0.782 at 18 mm.
This indicates that the impact of spatial smoothing
depends on the reference region for intensity scaling:
the impact is large for proportional scaling, but small
for parenchyma scaling. Stability of parenchyma scal-
ing with respect to the amount of smoothing might be
considered an advantage, particularly in multi-site and
single-site/multi-camera settings in which the spatial
resolution of the tested images depends also on camera-
specific PET acquisition and reconstruction protocols.

It might be noted that smoothing with 8 mm FWHM
provided greater AUC than smoothing with 12 mm
FWHM (Fig. 4), although the difference was very
small and far from being statistically significant. Nev-
ertheless, we recommend 12 mm rather than 8 mm
smoothing. The rationale for this is that 12 mm is better
in compensating inter-scan variability in spatial res-
olution in the original brain FDG PET images. The

variability of spatial resolution in ADNI PET images
is rather small due to homogenization of the acqui-
sition protocol across different PET scanners in the
ADNI. Variability is expected to be larger in settings
with less homogenized acquisition protocols. In these
cases, 12 mm smoothing is more effective than 8 mm
smoothing in reducing non-physiological inter-subject
variability of FDG uptake.

Accounting for the subjects’ age as covariate in the
statistical testing did not improve the performance of
FDG PET single subject analysis for the prognosis
of MCI-to-AD conversion. Therefore, age correction
does not appear mandatory for this task, at least as long
as patients and control group for voxel-based testing
are well matched with respect to age (all groups were
very well matched with respect to age in the present
study, Table 1). Age correction might have even detri-
mental effects, particularly if some of the older subjects
in the control group suffer from preclinical AD. In this
case, age correction will correct not only for effects of
healthy aging on FDG uptake but, to some extent, also
for AD-typical hypometabolism. The latter will reduce
the power for detection of the AD pattern in patients
to be diagnosed.

Finally, switching the order of image smoothing
and intensity scaling, i.e., performing intensity scaling
prior to smoothing, resulted in considerable deteriora-
tion of the prognostic power and, therefore, cannot be
recommended.

Altogether, optimizing the parameter setting of the
SPM processing pipeline improved the AUC of the
t-sum score for differentiation between MCI-to-AD
converters and MCI stable subjects by about 14%
from 0.728 (SPM default setting) to 0.832 (Fig. 4,
5). The effect was statistically significant (two-sided
p = 0.046). To put this into perspective, it might be
noted that many studies suggest a capping of prog-
nostic accuracy in MCI patients considerably below
100%, independent of the criteria and/or biomark-
ers used [28, 51–54]. Therefore, not only the relative
improvement by 14%, but also the final absolute value
of AUC = 0.832 appears rather remarkable, particularly
as it can be achieved rather easily without extra costs,
i.e., using standard FDG PET acquisition protocols (no
dynamic imaging of the full time course of FDG con-
centration in tissue starting with i.v. injection required,
no blood sampling, no tracer kinetic modeling) and
the freely available SPM software package with only
minor adaptions.

This finding was confirmed in an independent vali-
dation sample of 241 further ADNI MCI subjects. The
relative improvement in AUC was about the same in
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the original and in the validation sample: 14% and
11%, respectively. However, it should be noted that the
absolute AUC values were lower in the validation sam-
ple: 0.675 versus 0.728 with default parameter settings,
0.746 versus 0.832 with optimized parameter settings
of the SPM8 processing pipeline. We hypothesize that
this is related to the fact that the original sample mainly
included late MCI subjects from the ADNI-1 phase,
whereas the validation sample included many subjects
from ADNI-GO and ADNI-2 with early MCI in which
prognosis is expected to be more difficult than in late
MCI. To some extent this is reflected by the fraction of
MCI-to-AD converters in both samples, as it is smaller
in the validation sample (25% versus 29%).

The power of brain FDG PET for the prognosis of
MCI-to-AD conversion has been investigated in sev-
eral previous studies using different methods. Arbizu
and coworkers, who evaluated a variant of the AD-
related hypometabolic convergence index [55] for the
prognosis of MCI-to-AD conversion in 121 ADNI MCI
subjects, reported an AUC of 0.804 for a multivariate
model including the posterior cingulate index together
with age, gender, MMSE, and ApoE4 status [51]. Mor-
belli and coworkers, who evaluated the AD t-sum score
in 127 MCI patients from the European Alzheimer’s
Disease Consortium network, reported an accuracy of
79.6% for prediction of MCI-to-AD conversion [54].
In the present study, maximum accuracy of the t-sum
score was 83.3%.

In a recent study on multimodal prediction of MCI-
to-AD conversion we found the sum score of the
functional activity questionnaire (FAQ) to be the best
single feature [56]. For the original n = 108 ADNI MCI
sample included in the present study, ROC analysis of
this sum score (FAQTOTAL) resulted in AUC = 0.786
(Fig. 5). Thus, the t-sum score from the single sub-
ject analysis of FDG PET performed better than the
FAQ only after optimizing the processing protocol.
This finding underpins the necessity of optimizing sin-
gle subject analysis of brain FDG PET, since otherwise
the additional benefit from FDG PET might be rather
small, particularly when considering the cost-benefit
ratio.

Concerning the parameter setting for single subject
analysis of brain FDG PET within the SPM framework,
Perani and colleagues optimized an SPM5-based pro-
cessing pipeline with respect to differential diagnosis
of neurodegenerative diseases including AD, fron-
totemporal lobar degeneration (FTLD), and dementia
with Lewy bodies [57]. Visual interpretation of the sta-
tistical parametric maps improved the differentiation
between AD and FTLD compared to visual interpre-

tation of the raw FDG uptake images. The optimized
SPM5 processing pipeline used PET-based stereotacti-
cal normalization (with very similar parameter settings
as in the present study) to a dementia-specific FDG
template, proportional intensity scaling followed by
smoothing with an isotropic 3-dimensional Gaussian
kernel of 8 mm FWHM. The impact of extracranial
inter-subject variability of FDG uptake was taken into
account by an explicit mask to restrict voxel-based test-
ing to the brain. The results of this previous study are
in good agreement with the results of the present study.
Minor differences of the optimized processing pipeline
between the two studies might be explained by the dif-
ferent task for which the processing was optimized:
differential diagnosis of neurodegenerative diseases in
the study by Perani and colleagues versus MCI-to-AD
conversion in the present study. Visual interpretation of
statistical parametric maps in the Perani study versus
quantitative t-sum score analysis in the present study
might also have contributed to the minor differences.

Limitations of the present study include the use of a
fixed time interval for prediction (3 years) and that all
analyses were strictly univariate. Future studies might
use Kaplan-Meier analysis and/or multivariate Cox
regression to better account for inter-subject variability
of follow-up duration and time to conversion as well
as to assess the incremental value of FDG PET over
other features used for the diagnosis of AD.

Conclusion

Optimizing SPM for voxel-based single subject
analysis of brain FDG PET can provide considerable
improvement of MCI-to-AD prediction. To achieve
this we recommend: (i) reconstruction (of list mode
data) into several frames of constant duration (1
to 5 min), (ii) frame-by-frame motion correction by
realignment to the reference frame (chronologically
closest to the low-dose CT for attenuation correction),
(iii) discarding all frames with more than 4 mm dis-
placement with respect to the reference frame in order
to avoid attenuation artifacts (if the spatial mismatch
with respect to the low-dose CT for attenuation cor-
rection can be corrected frame-by-frame during image
reconstruction, this might be preferred), (iv) add the
selected frames to generate one static FDG uptake
image (5 min total duration provides sufficient statis-
tical image quality in most cases), (v) 3-dimensional
spatial smoothing with an isotropic Gaussian kernel
with 12 mm FWHM, (vi) voxel-wise intensity scaling
to the mean tracer uptake in brain parenchyma using
a predefined mask in template space. These steps can
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easily be implemented as a fully automatic processing
pipeline.
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