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Abstract The objective is to estimate average global and

regional percentage brain volume loss per year (BVL/year)

of the physiologically ageing brain. Two independent,

cross-sectional single scanner cohorts of healthy subjects

were included. The first cohort (n = 248) was acquired at

the Medical Prevention Center (MPCH) in Hamburg,

Germany. The second cohort (n = 316) was taken from the

Open Access Series of Imaging Studies (OASIS). Brain

parenchyma (BP), grey matter (GM), white matter (WM),

corpus callosum (CC), and thalamus volumes were calcu-

lated. A non-parametric technique was applied to fit the

resulting age–volume data. For each age, the BVL/year

was derived from the age–volume curves. The resulting

BVL/year curves were compared between the two cohorts.

For the MPCH cohort, the BVL/year curve of the BP was

an increasing function starting from 0.20% at the age of

35 years increasing to 0.52% at 70 years (corresponding

values for GM ranged from 0.32 to 0.55%, WM from 0.02

to 0.47%, CC from 0.07 to 0.48%, and thalamus from 0.25

to 0.54%). Mean absolute difference between BVL/year

trajectories across the age range of 35–70 years was 0.02%

for BP, 0.04% for GM, 0.04% for WM, 0.11% for CC, and

0.02% for the thalamus. Physiological BVL/year rates were

remarkably consistent between the two cohorts and inde-

pendent from the scanner applied. Average BVL/year was

clearly age and compartment dependent. These results need

to be taken into account when defining cut-off values for

pathological annual brain volume loss in disease models,

such as multiple sclerosis.
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Introduction

Brain volume loss (or brain atrophy) determined by struc-

tural magnetic resonance imaging (MRI) is an increasingly

recognized quantitative in vivo measure of degenerative

pathology in neuro-immunological diseases, such as mul-

tiple sclerosis (MS). Whole brain volume as well as white

matter volume changes lack specificity for the underlying

pathology and can be confounded by tissue fluid dynamics

[1]. Grey matter atrophy may be less susceptible to these

confounding factors, more sensitive throughout different

disease stages, and correlate better with clinical findings

[2, 3]. In recent studies, thalamic atrophy has been identified

as a promising MRI metric for MS, since it likely reflects

multiple downstream mechanisms in MS pathology [4–6].

Thalamic atrophy is a predictor for conversion from clini-

cally isolated syndrome (CIS) to MS [7] and correlates well

with cognitive and physical disability [7–9]. Corpus

Electronic supplementary material The online version of this
article (doi:10.1007/s00415-016-8374-y) contains supplementary
material, which is available to authorized users.

& Sven Schippling

sven.schippling@usz.ch

1 Neuroimmunology and Multiple Sclerosis Research,

Department of Neurology, University Hospital Zurich and

University of Zurich, Frauenklinikstrasse 26, 8091 Zurich,

Switzerland

2 jung diagnostics GmbH, Martinistrasse 52, 20251 Hamburg,

Germany

3 Medical Prevention Center Hamburg (MPCH), Falkenried

88, 20251 Hamburg, Germany

4 Swiss Epilepsy Centre, Bleulerstrasse 60, 8008 Zurich,

Switzerland

123

J Neurol

DOI 10.1007/s00415-016-8374-y

http://orcid.org/0000-0002-9911-5478
http://dx.doi.org/10.1007/s00415-016-8374-y
http://crossmark.crossref.org/dialog/?doi=10.1007/s00415-016-8374-y&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00415-016-8374-y&amp;domain=pdf


callosum (CC) atrophy rates have been studied to a lesser

extent. It has been shown, however, that all segments of the

CC are significantly reduced when comparing early onset

MS patients to healthy subjects [10]. Next to lesion load,

CC and thalamic atrophy have been shown to predict the

long-term disability in MS [11]. In sum, both thalamus and

the CC seem to be sensitive MRI metrics of MS-related

brain atrophy at the earliest clinical stages of the disease. It

is against this background that we decided for these two

sites. For the interpretation of disease-related atrophy, it is

important to better understand the magnitude of change

related to aging, in addition to other biological or method-

ological confounders. In diseases, such as MS, discerning

pathological brain atrophy from physiological aging is

crucial in the interpretation of brain volume loss rates. In a

recent study by De Stefano et al. [12], pathological cutoffs

for whole brain atrophy were suggested to differentiate MS

patients from healthy controls. However, cross-sectional

[13–17] as well as longitudinal studies [18–20] found that

the rate of brain volume loss critically depends on age, brain

region, and tissue compartment. In this study, we aimed to

extend work presented previously by others in several

aspects. Two independent, cross-sectional single scanner

cohorts of healthy subjects were included into our study.

Global and regional brain volumes were computed using a

recently described atlas-based volumetry approach [21, 22].

A non-parametric approach was applied to estimate age–

volume relationships for each cohort at each age epoch and

for each brain region separately. As a result of our study, we

present detailed listings of average global and regional

percentage brain volume loss rates per year in physiological

aging. The resulting annual brain volume loss curves were

compared between the two cohorts.

Materials and methods

Patient cohort and image acquisition

Two independent, single scanner cohorts of healthy indi-

viduals with a broad age range were included in our cross-

sectional study.

The first cohort was selected from a group of asymp-

tomatic subjects undergoing a brain MRI scan as part of an

extensive medical prevention program between 2008 and

2012 at the Medical Prevention Center (MPCH) in Ham-

burg, Germany. All subjects gave written informed consent.

The study was approved by the Ethics Board of the

Ärztekammer, Hamburg, Germany. Subjects participating

in the prevention programwere included into the final cohort

if they turned out to be healthy, meaning that they had no

history of or currently ongoing neurological or psychiatric

disease and if there were no structural abnormalities on brain

MRIs according to visual inspection by an experienced

radiologist (CG). All images were obtained with the same

1.5 T Magnetom Avanto Scanner (Siemens Medical Solu-

tions, Erlangen, Germany). A 3D T1-weighted magnetiza-

tion prepared rapid gradient echo (MPRAGE) sequence was

acquired with repetition time (TR) of 980 ms, echo time

(TE) of 2.95 ms, time interval (TI) of 600 ms, a flip angle of

15�, and isotropic voxel grid of 1 mm. The sequence was

obtained before contrast agent administration. Scanner,

protocol settings, head coil, and software version remained

unchanged for all subjects enrolled into our study.

The second cohort was taken from the Open Access

Series of Imaging Studies (OASIS) [14, 18]. OASIS is a

series of MRI data sets that are publicly available for study

and analysis. The whole OASIS data set consists of a cross-

sectional collection of 316 healthy and 100 demented sub-

jects aged 18–96 years. We included only the 316 healthy

individuals from that study. Young and middle-aged adults

were asked by a trained technician about their medical

histories and use of psychoactive drugs before inclusion.

Older adults, aged 60 and older, underwent the full clinical

assessment to exclude active neurological or psychiatric

illness (e.g., major depression), serious head injury, history

of clinically meaningful stroke, and use of psychoactive

drugs (see [14] for detailed description of the cohort). For

each subject, 3–4 repeated back-to-back T1-weighted

MPRAGE images were acquired on a 1.5 Tesla Vision

scanner (Siemens Medical Solutions, Erlangen, Germany)

(TR 9.7 ms, TE 4.0 ms, TI 20 ms, flip angle of 10�, slice
thickness of 1.25 mm, no gap, and isotropic voxel grid of

1 mm and 128 sagittal slices were used throughout). The

sequence was acquired before any contrast agent adminis-

tration. From the series of repeated scans for each patient,

the first MRI scan was used for the analysis.

Tissue segmentation

T1 MPRAGE images were segmented into probabilistic

tissue class images of grey matter (GM), white matter

(WM), and cerebrospinal fluid (CSF) using a combined

segmentation and registration approach (unified segmen-

tation) [23] as implemented in the Statistical Parametric

Mapping 12 (SPM12, 2013) software package. GM and

WM volumes were determined by an integration of all

voxels of the corresponding probabilistic tissue class ima-

ges. Brain parenchymal volume was defined as the sum of

GM and WM volume.

Atlas-based corpus callosum and thalamus

volumetry

Global and regional brain volumes were computed by a

previously described atlas-based volumetry approach

J Neurol

123



[21, 22]. To determine regional brain volumes, the result-

ing tissue class images of the GM and WM were warped

into an atlas space using a high-dimensional elastic image

registration technique [24]. Volumetric measures of brain

structures were calculated by an integration of warped

tissue class images (GM and WM) restricted to pre-defined

binary masks in the atlas space. The thalamus mask was

taken from the WFU Pick Atlas (http://fmri.wfubmc.edu/

software/pickatlas). The CC mask, taken from the ICBM

DTI-81 white matter labels atlas (http://www.loni.usc.edu/

ICBM/Downloads/Downloads_DTI-81.shtml) was com-

posed of binary masks from the sub-regions genu, body,

and splenium [25]. Thalamic volumes were estimated using

the sum of GM and WM components, while for the CC

volumes, only the WM component was taken into account.

To estimate total intracranial volume (TIV), a recently

introduced and validated algorithm was used [26]. The

algorithm uses a TIV mask defined in a template space

which is inversely transformed from the template space

into the individual patient space resulting in a patient-

specific TIV mask [27]. The algorithm integrates the

probabilistic tissue class images of the GM, WM, and CSF.

The summation is restricted to the patient-specific TIV

mask.

Annual brain volume loss

Regional and global brain volumes correlate with TIV and

age [28]. Therefore, the brain volumes were adjusted for

TIV by computing the residuals with a linear regression

function (we regressed out the confounder TIV). We used a

student’s t test to assess whether there was still an asso-

ciation between sex and brain volume after adjustment for

TIV.

A kernel smoothing technique was employed to estimate

a smooth function describing the age–volume associations.

A kernel smoother is a statistical technique for estimating a

real-valued function using its noisy observations when a

parametric model for this function is unknown [29]. We

deployed a local linear regression with a Gaussian kernel.

Local linear regression solves for each point x(age in our

case) a local linear least square problem:

min
a;b

Xn

i¼1

Kk x; xið Þ yi � a� bxið Þ2;

where xi; yi are the age–volume measurements, and

Kk x; yð Þ is a Gaussian kernel with bandwidth k. The solu-

tion �a; �b of the local least square problem then estimates

the value of the non-parametric function f ðxÞ ¼ �aþ �bx at

the point x: The optimal and fixed kernel width k was

computed as suggested by Bowman et al. [30]. The kernel

width was first estimated for each data set separately. Then,

the average from the two estimations was used as the final

kernel width for both data sets. The value f ðxÞ at point x is
influenced by measurements which are adjacent to the

point x. It might lead to biases if there are no measurements

at one side of the point x. To avoid these boundary effects,

we compute the function f ðxÞ only at points which are

sufficiently far away from the boundary of the measure-

ments x; e.g., minðxiÞ þ k\x\maxðxiÞ � k.From the non-

parametric fit functions, we derived annual percentage

brain volume loss (BVL) by taking the local differences

BVLðxÞ ¼ 100 � f ðxÞ�f ðxþ1Þ
f ðxÞ (positive sign indicates brain

volume loss). The resulting BVL/year curves were com-

pared between the two cohorts.

Results

248 individuals from the MPCH cohort and 316 non-de-

mented individuals from the OASIS study were included in

the analysis. A comparison between the two cohorts is

detailed in Table 1, and the distribution of age and sex is

shown in Fig. 1.

The mean global and regional brain volumes (in ml) of

the two cohorts before and after adjustment for TIV are

shown in Table 2. After adjustment for TIV, the initial

analysis found no statistically significant gender effect

(smallest p value was 0.24); therefore, an additional

adjustment for this factor was not performed.

The optimal kernel bandwidth for fitting the age–volume

data according to the described methods was 10.36 years

for the MPCH cohort and 16.63 years for the OASIS

cohort. The average of both (13.5 years) was used as a

bandwidth for both cohorts in all reported results.

In Fig. 2, age is plotted against the adjusted brain

volumes together with the non-parametric fit function for

both cohorts in the left and in the middle column. In the

right column of Fig. 2, the associations between age and

BVL/year for the MPCH and the OASIS cohort are

shown. Table 3 summarizes the BVL/year rates for GM,

WM, CC, and thalamus as shown in the right column of

Fig. 2. For an easier comparison between the cohorts, the

values of the BVL function were averaged over 5 year

intervals. Mean absolute difference between both BVL/

year curves derived from the two cohorts across an age

range of 35–75 years was 0.02% for BP, 0.06% for GM,

0.04% for WM, 0.11% for CC, and 0.02% for the tha-

lamus. For the MPCH cohort, the BVL/year curves of the

BP were an increasing function starting from 0.2% at the

age of 35 years accumulating to 0.52% at the age of

70 years (corresponding values for GM ranged from 0.32

to 0.55%, WM from 0.02 to 0.47%, CC from 0.07 to

0.48%, and thalamus from 0.25 to 0.54%).
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Discussion

Our study revealed remarkable consistency for estimates of

mean physiological BVL/year between the two indepen-

dent data sets. In addition, our findings appear to be largely

independent of the scanners used for acquisition and from

the cohorts (see Fig. 2). In accordance with previously

Fig. 1 Histogram of sex and age of the MPCH and the OASIS cohort

Table 2 Mean (standard

deviation) global and regional

brain volumes (in ml) before

and after adjustment for total

intracranial volume (TIV)

MPCH cohort OASIS cohort

M (n = 170) F (n = 78) p M (n = 119) F (n = 197) p

BP 1187.94 (103.43) 1076.21 (86.69) \0.001 1254.95 (124.52) 1109.40 (124.45) \0.001

adj BP 1149.38 (70.55) 1160.25 (58.00) 0.24 1170.03 (97.10) 1160.69 (94.98) 0.40

GM 689.62 (61.86) 636.75 (53.78) \0.001 754.10 (93.22) 669.94 (90.04) \0.001

adj GM 671.13 (50.37) 677.03 (42.77) 0.37 706.10 (84.02) 698.93 (77.23) 0.44

WM 498.33 (52.26) 439.46 (41.77) \0.001 500.85 (49.03) 439.46 (46.21) \0.001

adj WM 478.25 (33.97) 483.21 (27.18) 0.26 463.93 (31.89) 461.76 (31.18) 0.55

CC 22.42 (2.81) 19.74 (2.58) \0.001 22.70 (2.46) 20.22 (2.57) \0.001

adj CC 21.51 (2.14) 21.74 (2.13) 0.43 21.04 (1.93) 21.22 (1.84) 0.40

Thal 12.51 (1.01) 11.60 (0.98) \0.001 12.85 (1.27) 11.78 (1.24) \0.001

adjThal 12.22 (0.87) 12.23 (0.82) 0.92 12.22 (1.11) 12.16 (1.09) 0.67

Standard deviations are shown in brackets

BP brain parenchyma, GM grey matter, WM white matter, CC corpus callosum, Thal thalamus, adj

adjusted, m male, f female

Table 1 Distribution of sex and age of the MPCH and the OASIS cohort

Sex Age

Number of males (%) Number of females (%) Mean Standard deviation Minimum Maximum

MPCH 170 (68.5) 78 (31.5) 58.6 13.2 18.3 89

OASIS 119 (37.7) 197 (62.3) 45.1 23.9 18 94

cFig. 2 Association between age and adjusted brain volume for the

MPCH (left column) and the OASIS cohort (middle column). The

non-parametric fit functions are shown as a dotted (MPCH) and as a

solid (OASIS) black line. The curves are shifted by ±1.96 standard

deviations to illustrate the 95% range. Association between age and

the annual percentage brain volume loss for the MPCH (dotted line)

and the OASIS (solid line) cohort is shown in the right column. BP

brain parenchyma, GM grey matter, WM white matter, CC corpus

callosum
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published data, we also found that BVL/year rates

increased with greater age. BVL/year for whole brain

volumes is only 0.2% at the age of 35, while it increases to

0.52% at the age of 75. These results are in good agreement

with the magnitude of change reported in longitudinal

studies. In the longitudinal study by Fjell et al. [31], a mean

BVL/year of 0.44% was reported in a cohort of 132 indi-

viduals with an age range between 55 and 91 years. In

another recent longitudinal study by De Stefano [12] and

co-workers, healthy controls aged B35 years (n = 16) had

a BVL/year of 0.2%, whereas subjects with an age of

35 years or higher (n = 19) had a mean BVL/year of

0.32%. In that same study, pathological brain atrophy cut-

off values of 0.40% and 0.52% were thought to distinguish

between MS and healthy individuals with satisfying sen-

sitivity and specificity. Taken together these results suggest

that cut-off values need to be interpreted specifically in

light of the age range of the MS population investigated.

In another study by De Stefano et al. [32], it was shown

that more advanced MS patients feature higher BVL/year

rates than patients in early stages of the disease. However,

it was also shown that when correcting BVL/year rates for

the baseline normalized brain volume, the differences in

BVL/year rates between different MS phenotypes disap-

peared. An alternative approach and an interesting appli-

cation of our results would be to correct the measured

BVL/year rates by the rate of normal BVL/year as pre-

sented in our study. Since normalized brain volumes are

confounded by age as well as by the disease this approach

might better disentangle age-related effects from disease-

related effects.

Volume loss in healthy individuals is remarkably

heterogeneous between different tissue compartments (e.g.,

grey matter and white matter). While there is hardly any

observable loss of WM at the age of 35, GM is reduced by

0.32% per year at this age. This difference, however, is no

longer observed at the age of 70; BVL/year in the WM is

0.47 and 0.55% in the GM compartment among healthy

individuals. The tissue loss rates observed in the older

individuals in our study are in good agreement with results

of the longitudinal study by Fjell et al. [31]. In this study,

132 healthy individuals between 55 and 91 years showed a

mean BVL/year of 0.49% for both GM and WM. These

findings are in contrast with results observed in patients

with relapsing forms of MS. Here, WM loss is present in

the earliest disease stages, whereas GM loss starts later but

increases rapidly over time and overtakes WM loss [3].

Relevant to clinical trials in MS, as much as for MS

research and imaging evaluation, is the volume loss

observed in deep grey matter, especially in the thalamus.

We demonstrated that thalamic atrophy closely resembles

the whole BP volume loss/year, with an average of 0.25%

at the age of 35, increasing to 0.54% at the age of 70. A

thalamic BVL/year of 0.62% was reported in the longitu-

dinal study [31]. In a placebo-controlled MS phase-3 trial,

a yearly thalamic volume loss of 0.9% in the placebo group

and 0.65% in the treatment arm has been reported [33]. In

the study by Zivadinov et al. [7], thalamic atrophy was

assessed longitudinally in a group of 90 MS patients with

sustained diseases progression (mean thalamic volume loss

6.2% within 5 years) and in 90 RRMS patients with

stable disease (mean thalamic volume loss 4.5% within

5 years). The rate of thalamic atrophy in these MS patients

was four times higher than thalamic atrophy rates reported

in our study.

The BVL/year in the CC closely mirrored annual vol-

ume loss that was found in the WM, with 0.02% (WM) and

0.07% (CC) at age 35 increasing to 0.47% (WM) and

Table 3 Annual brain volume loss (BVL) in % for the MPCH and the OASIS cohort for brain parenchyma (BP), grey matter (GM), white mater

(WM), corpus callosum (CC), and thalamus

Age, range

(years)

BP GM WM CC Thalamus

MPCH OASIS Abs

diff

MPCH OASIS Abs

diff

MPCH OASIS Abs

diff

MPCH OASIS Abs

diff

MPCH OASIS Abs

diff

(35, 40) 0.20 0.21 0.01 0.32 0.35 0.03 0.02 0.00 0.02 0.07 -0.01 0.08 0.25 0.24 0.01

(40, 45) 0.21 0.23 0.02 0.33 0.36 0.03 0.04 0.04 0.00 0.10 0.02 0.08 0.25 0.25 0.00

(45, 50) 0.24 0.26 0.02 0.35 0.38 0.03 0.08 0.09 0.00 0.14 0.06 0.08 0.27 0.28 0.01

(50, 55) 0.28 0.30 0.02 0.37 0.41 0.04 0.15 0.14 0.01 0.19 0.10 0.09 0.30 0.31 0.01

(55, 60) 0.33 0.35 0.02 0.41 0.45 0.04 0.23 0.20 0.03 0.25 0.15 0.10 0.34 0.35 0.01

(60, 65) 0.40 0.40 0.00 0.45 0.50 0.05 0.31 0.26 0.05 0.32 0.20 0.12 0.40 0.39 0.01

(65, 70) 0.46 0.45 0.01 0.50 0.55 0.05 0.40 0.31 0.09 0.39 0.26 0.13 0.47 0.43 0.04

(70, 75) 0.52 0.48 0.04 0.55 0.58 0.03 0.47 0.34 0.13 0.48 0.31 0.17 0.54 0.47 0.07

Mean 0.33 0.34 0.02 0.41 0.45 0.04 0.21 0.17 0.04 0.24 0.14 0.11 0.35 0.34 0.02

The BVL is averaged for 5 year intervals. For each interval, the absolute differences (abs diff) between the two cohorts were determined. The last

row shows average BVL and the average difference in BVL between the cohorts over the complete age range
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0.48% (CC) at age 70. These results are in contrast to the

results reported in a study on longitudinal trajectories [34],

where the author did not observe any volumetric changes

of the CC with increasing age. Since we observed a similar

pattern in both cohorts, this discrepancy might be explained

by different methodical approaches.

As detailed in Fig. 2, there appears to be a wider dis-

tribution of volumes for white matter and corpus callosum

in comparison with grey matter and thalamus. As it can be

calculated from Table 2, the coefficient of variation (std/

mean) for the GM (MPCH, adjusted, male) is 50.37/

671.13 ml = 0.07, whereas for the WM and CC, it is

52.26/498.33 ml = 0.10 and 2.14/21.51 ml = 0.09,

respectively. Thus, GM loss has approximately 25% less

variability than WM or CC volume change. This phe-

nomenon has also been observed in other studies [15, 3]. A

possible explanation would be that GM may have less

biological variability than the WM due to confounding

factors, such as hydration status.

A general limitation of our study is its cross-sectional

nature. We infer age-related changes in brain volume of

healthy individuals. The extent to which atrophy rates

extrapolated based on cross-sectional data can be com-

pared to data generated in true prospective longitudinal

studies remains controversially discussed [34–36]. Cross-

sectional studies, in general, can be compromised by

cohort effects or by selection bias. In our study, we

analysed brain volumes of different individuals over a

wide age range. Young individuals in our cohorts might

have been exposed to different environmental and socio-

economic factors than older individuals. For instance

nutrition, lifestyle and healthcare changed considerably

over the past 50 years. This can potentially influence

brain volumes. Another drawback of cross-sectional

studies is the possibility of hidden selection biases within

the cohorts (e.g., young versus older controls) or between

the two cohorts. The observed differences in annual brain

volume loss rates can potentially be explained by differ-

ence in educational or fitness level between the two

cohorts. In the study by Gordon et al. [37], a positive

effect of education was found for the anterior white

matter, specifically, in the rostrum of the corpus callosum.

Although the educational level of the MPCH cohort is

unknown, the higher educational level among individuals

over 60 years in the OASIS cohort might partially explain

the lower annual brain volume loss in the white matter

(including the corpus callosum) in comparison with the

MPCH cohort.

Given these potential limitations, we tried to address

them as precisely as possible.

It is known that scanners hardware and protocols can

lead to a bias in volumetric measurements (see [5, 6]).

Some authors combined cohorts from different scanners to

obtain larger cohort sizes [7, 8]. The two presented cohorts

are single scanner cohorts. For each cohort, the identical

scanner hardware and protocol was used for all subjects.

We, therefore, can exclude scanner-related selection bias in

our study.

We included and compared two independent cohorts in

our study. The results between the cohorts are very con-

sistent. This renders a larger selection bias within the

cohort less likely.

Young and older individuals in our cohorts might have

been exposed to different environmental and socio-eco-

nomic factors. However, if these effects were present in the

two cohorts, this should not only impact the size of brain

volumes but also the size of the total intracranial volume

(TIV) as a surrogate for the head size. However, there was

no association between age and TIV in our cohorts

(Spearman correlation coefficient for OASIS and MPCH

combined female: r = -0.02, p = 0.64, male r = 0.06,

p = 0.27). This suggests that environmental and socio-

economic factors did not significantly impact on head size

in our two cohorts.

It is important to emphasize that the curves in Fig. 2 do

not represent age trajectories of an individual subject. The

curves show how the mean of a healthy population evolves

over time (with the limitations of cross-sectional studies as

discussed). The derived BVL/year rates (right column in

Fig. 2) can, therefore, be interpreted as the mean BVL/year

rates of a healthy population for a specific age range. To

understand and describe this in a bit more detail, we make

the following side note. We assume that the age–volume

trajectories of n individuals are known and they are

described by the set of functions gi xð Þ; 1� i� n. The

variable x describes the age and each function gi(x)

describes how brain volumes evolve over time. The BVL/

year rates at age x of these individuals are given by the first

derivative of the functions gi, i.e., bvli xð Þ ¼ g
0
iðxÞ. The

mean curve of the trajectories is given by GðxÞ ¼
Pn

i¼1
giðxÞ

n
:

Since taking the derivative of a function is a linear oper-

ation, we obtain

G0ðxÞ ¼
Pn

i¼1 g
0
i xð Þ

n
:

The equation above tells us that it is the same computing

the BVL/year from the mean trajectories (as proposed in

the right column of Fig. 2) or computing the mean of the

individual BVL/year rates. However, in a cross-sectional

study, usually, g0iðxÞ is unknown and only one point on each
curves giðxÞ is available (a computer simulation is shown in

Fig. 3 provided in the supplementary material). In our

manuscript, we use these cross-sectional points to estimate

the function GðxÞ. An individual subject can deviate from

this mean and it is not possible to derive the standard
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deviations for presented BVL/year rates (Table 3) from the

cross-sectional data.

In most cross-sectional studies so far, non-linearity of

age–volume relationships is modelled using quadratic or

higher polynomial approaches. In the work by Fjell et al.

[40], the disadvantages of quadratic fit models are criti-

cally discussed and a non-parametric fitting approach was

suggested instead. A similar non-parametric fitting

approach was used in this study. In a recent study by the

same group [17], age–brain structure relationships were

investigated using a non-parametric fitting model on

cross-sectional data. The fitting models were used to

identify critical age ranges in which regional brain vol-

ume loss appears to accelerate. The focus of this paper

was to present a detailed listing of average global and

regional percentage brain volume loss rates per year for a

broad age range.

Conclusion

Physiological BVL rates can be assessed cross sectionally

using a non-parametric fitting approach and results appear

in line with those reported in longitudinal studies. Our

results were remarkably consistent between the two cohorts

and largely independent of the scanner used. Average

BVL/year was clearly age dependent and heterogeneous

between different tissue compartments. Overall rates of

loss increased with greater age, independently of the MRI

technology and the tissue compartment.

Our results are relevant to clinical trials executed in the

field of MS using thalamic atrophy as a pre-defined end-

point. They also need to be taken into account when

defining cut-off values to dissect pathological from physi-

ological annual brain volume loss rates at different age

ranges.
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